Spurious Results of Fluctuation Analysis Techniques in Magnitude and Sign Correlations
نویسندگان
چکیده
Fluctuation Analysis (FA) and specially Detrended Fluctuation Analysis (DFA) are techniques commonly used to quantify correlations and scaling properties of complex time series such as the observable outputs of great variety of dynamical systems, from Economics to Physiology. Often, such correlated time series are analyzed using the magnitude and sign decomposition, i.e., by using FA or DFA to study separately the sign and the magnitude series obtained from the original signal. This approach allows for distinguishing between systems with the same linear correlations but different dynamical properties. However, here we present analytical and numerical evidence showing that FA and DFA can lead to spurious results when applied to sign and magnitude series obtained from power-law correlated time series of fractional Gaussian noise (fGn) type. Specifically, we show that: (i) the autocorrelation functions of the sign and magnitude series obtained from fGns are always power-laws; However, (ii) when the sign series presents power-law anticorrelations, FA and DFA wrongly interpret the sign series as purely uncorrelated; Similarly, (iii) when analyzing power-law correlated magnitude (or volatility) series, FA and DFA fail to retrieve the real scaling properties, and identify the magnitude series as purely uncorrelated noise; Finally, (iv) using the relationship between FA and DFA and the autocorrelation function of the time series, we explain analytically the reason for the FA and DFA spurious results, which turns out to be an intrinsic property of both techniques when applied to sign and magnitude series.
منابع مشابه
Characterization of sleep stages by correlations in the magnitude and sign of heartbeat increments.
We study correlation properties of the magnitude and the sign of the increments in the time intervals between successive heartbeats during light sleep, deep sleep, and rapid eye movement (REM) sleep using the detrended fluctuation analysis method. We find short-range anticorrelations in the sign time series, which are strong during deep sleep, weaker during light sleep, and even weaker during R...
متن کاملQuantifying Heartbeat Dynamics by Magnitude and Sign Correlations
We review a recently developed approach for analyzing time series with long-range correlations by decomposing the signal increment series into magnitude and sign series and analyzing their scaling properties. We show that time series with identical long-range correlations can exhibit different time organization for the magnitude and sign. We apply our approach to series of time intervals betwee...
متن کاملDistance Dependent Localization Approach in Oil Reservoir History Matching: A Comparative Study
To perform any economic management of a petroleum reservoir in real time, a predictable and/or updateable model of reservoir along with uncertainty estimation ability is required. One relatively recent method is a sequential Monte Carlo implementation of the Kalman filter: the Ensemble Kalman Filter (EnKF). The EnKF not only estimate uncertain parameters but also provide a recursive estimat...
متن کاملMinimizing the effect of trends on detrended fluctuation analysis of long-range correlated noise
Detrended fluctuation analysis (DFA) has been proposed as a robust technique to determine possible long-range correlations in power-law processes [1]. However, recent studies have reported the susceptibility of DFA to trends [2] which give rise to spurious crossovers and prevent reliable estimation of the scaling exponents. Inspired by these reports, we propose a technique based on singular val...
متن کاملEstimation of Source Location Using Curvature Analysis
A quadratic surface can be fitted to potential-field data within 3×3 windows, which allow us to calculate curvature attributes from its coefficients. Phillips (2007) derived an equation depending on the most negative curvature to obtain the depth and structural index of isolated sources from peak values of special functions. They divided the special functions into two categories: Model-specific...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 19 شماره
صفحات -
تاریخ انتشار 2017